The keys to success are heat pumps and energy storage. With today's highly efficient lighting and appliances, the large majority of our home energy use is for heat and cooling, including HVAC, hot water and refrigeration. And, while energy storage in batteries is quite expensive, energy storage in the form of heat is relatively cheap and easy.
By using a typical heat pump, we can generate relatively efficient heating and cooling. By using the more moderate temperatures available from the earth or a pond, we can improve the efficiency considerably. But, we would improve the efficiency even more if we could use both the hot and cold side of the heat pump. Unfortunately, heat load and cooling load rarely match.
That is where energy storage comes in. By capturing both the heat and cooling in water storage tanks, we can more easily match heat and cooling load, and utilize the ground source only for the longer term load differential. The energy storage not only allows us to use both the hot and cold side of the heat pump, but it allows us to take advantage of off peak rates and to better utilize renewables, since energy storage is one of the most difficult issues in each case.
Fortunately, it is relatively simple to implement a system with all these advantages. In concept it would look something like the below.

As a result, you have an extremely efficient system for generating the heat and cooling required by your house. The storage allows matching of your cooling and heating load over time, and also allows greater utilization of off peak power. Best of all, it can even out the swings associated with wind and solar power. The compressor can be turned either by electricity, or directly by the wind turbine. And the same storage allows you to utilize solar heat collected during the day, and cooling captured in cold evenings with the solar collector. Then just circulate the water to sypply heat or cooling needs in the house.
You'll still need electricity for lighting, appliances and electronics, but the combination of the above system and energy efficient equipment available today can dramatically decrease the amount required. And, if the desire is to live off grid, the electricity storage requirements are minimized to the point where they can be met at a reasonable cost by batteries. And, the above system could be electricity free if the equipment is arranged to allow thermosiphoning, rather than pumping of the water.
I'm open for comments.
6 comments:
Energy Guru - what's the approximate up front cost of installing said heating/cooling conservation system on top of the solar/wind sources for power generation? And then what's your estimated payback period?
I've considered a more conventional ground source heat pump system for installation in my future dream/green/retirement home, and would be interested in knowing more about the $$ impact for this type of system.
Thx.
ASG
www.hopsandbarleyblog.com
Post a Comment